Turlough Downes 
Prof Downes' research is focused primarily on the dynamics of flows in star forming regions. This includes addressing questions associated with (molecular cloud) structure formation and magnetic field behaviour in astrophysical turbulence, as well as the dynamics of protoplanetary disks. He is also involved in studying questions surrounding Fermi acceleration of relativistic particles at supernova shocks and gammaray bursts. The tool of choice for addressing these questions is numerical simulations and, where necessary, some of the world's largest supercomputers are used in the pursuit of a greater understanding of these systems.

I am a radio astronomer that works on understanding the properties of magnetic fields that pervade the Universe. One of the goals of my work is to uncover the origin of cosmic magnetic fields. In order to do this, the properties of magnetic fields in different cosmic environments (e.g. in galaxies and the intergalactic medium) need to be measured and understood. I also investigate how magnetic fields can launch relativistic jets of plasma from supermassive black holes and how these jets impact their environments on large scales. My work uses data from radio telescopes all around the world, including the LOFAR telescope (a part of which is located in Ireland).
Brien Nolan

My research focusses on different aspects of black holes and spacetime singularities in the context of General Relativity (GR). This theory – Einstein’s geometric theory of the gravitational field – describes our universe as a 4dimensional curved spacetime. It provides the mathematical tools for the analysis of such phenomena as the gravitational collapse of stars to form black holes, the interaction and collision of black holes, the generation and propagation of gravitational waves (ripples in the curved spacetime) and the evolution of the universe as a whole. In particular, I am interested in the Cosmic Censorship Hypothesis (CCH), the propagation of waves in curved spacetimes and the description of black holes (and other extended bodies) in isotropic universes. Studying the Cosmic Censorship Hypothesis involves trying to resolve the question of whether or not the singularity that inevitably forms as the end state of gravitational collapse is always hidden inside a black hole. The analysis of wave propagation in curved spacetimes is a nontrivial matter due to the fact that the waves don’t just spread out uniformly from their source (as on the surface of a pond): they can get trapped, distorted and pulled all the way around the black hole under the influence of its extreme gravitational field. Understanding the propagation of such waves is crucial for a full understanding of the generation and propagation of gravitational waves. In mathematical terms, both areas of research are linked by the study of wave equations in curved spacetime, a topic that combines various different areas of mathematics (differential geometry, partial differential equations, Fourier analysis,…). In a different vein, I am also interested in using Einstein’s theory to find the appropriate mathematical description of black holes that exist not (essentially) in isolation, far from other material sources, but that are embedded in our expanding, galaxyfilled universe.
Masha Chernyakova 
My main scientific interests lie in the area of high energy astrophysics, which studies the most energetic events in the Universe. In my work I combine a theoretical approach of modelling of high energy sources with the analysis of multi wavelength experimental data. In particular I am interested in the mechanisms leading to particle acceleration and very high energy (VHE) emission in gammaray loud binaries and Galactic Centre (GC). While about half of the Galactic Xray sources are binary systems, only few (less than 10) binary systems are able to produce TeV emission. The aim of my studies is to understand what makes these systems so special. Understanding of the origin of the high energy emission of the GC (e.g. hadronic or leptonic, diffusive or not) is important for understanding of the origin and properties of the cosmic rays in the central region. In addition to that I am also involved in the simulation of these VHE sources for Cherenkov Telescope Array (CTA).
Peter Taylor

My research is mainly concerned with classical and quantum aspects of black holes. From a quantum perspective, I am interested in quantum field theory in curved spacetimes and the associated theory of semiclassical gravity. The most famous prediction of this approximationand one of the most surprising and farreaching predictions of theoretical physicsis that black holes emit quantum thermal radiation, the socalled Hawking effect. On the classical front, I'm interested in the problem of motion in General Relativity including strong selfinteraction effects. This is particularly important for modeling binary black hole systems where one black hole is much larger than the other, a key astrophysical source of gravitational waves being targeted by the European Space Agency's eLISA mission.
Ko Sanders 
My research mainly concerns quantum field theories (QFTs) in curved spacetimes and black hole thermodynamics/Hawking radiation. QFTs form the basic language in which the standard model of elementary particle theory is formulated. The past few decades have seen remarkable theoretical advances and QFTs with perturbative interactions, like the standard model, can now be treated within a perfectly satisfactory generally covariant framework. This allows us to consider particle theory in any fixed external gravitational field. Nevertheless, there are many exciting open questions to work on, both at the mathematical and at the conceptual level. My own interests lie with mathematical problems surrounding the basic structure of axiomatic (nonperturbative) generally covariant QFTs, aspects of Hawking radiation, entanglement, and the fundamental nature of spacetime itself.
Abraham Harte 
My research focuses mainly on general relativity and other classical field theories. One major theme has been the theory of motion: How do the details of an object's internal structure affect its bulk movement or spin? How about a body's "own" electromagnetic, gravitational, or other fields? This is in essence the "selfforce problem." There is no selfforce at all in Newtonian gravity, although that changes in relativistic settings where Newton's third law fails and fields propagate at finite speeds. I have also been interested in the propagation of gravitational and electromagnetic waves in various contexts: gravitational lensing, wave optics in curved spacetimes, the consequences of caustic formation, and the buildup of nonlinear corrections over large distances. Most recently, I have been investigating the nonlinear structure of Einstein's equation in a broad sense, and finding that in various physicallyrelevant cases, the "intrinsic nonlinearity" is considerably less than might have been expected; traditional approaches employ variables which are poorly adapted to the equations at hand. I am working to generalize this and to better understand how it can be used to develop a more effective perturbation theory.